Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation

نویسندگان

  • Georg Hubmann
  • Lotte Mathé
  • Maria R Foulquié-Moreno
  • Jorge Duitama
  • Elke Nevoigt
  • Johan M Thevelein
چکیده

BACKGROUND Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330N…K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. RESULTS We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330N…K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P > hot1P107S,H274Y ≥ smp1R110Q,P269Q. CONCLUSIONS Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of negatively affecting other essential functions. The gene tools act at the transcriptional, regulatory or structural gene level, distributing the impact over multiple targets and thus further minimizing possible side-effects. In addition, the results suggest polygenic analysis of complex traits as a promising new avenue to identify novel components involved in cellular functions, including those important in industrial applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool.

On the basis of knowledge of the biological role of glycerol in the redox balance of Saccharomyces cerevisiae, a fermentation strategy was defined to reduce the surplus formation of NADH, responsible for glycerol synthesis. A metabolic model was used to predict the operating conditions that would reduce glycerol production during ethanol fermentation. Experimental validation of the simulation r...

متن کامل

Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae.

Wheat straw hydrolysate produced by enzymatic hydrolysis of hydrothermal pretreated wheat straw at a very high solids concentration of 30% dry matter (w/w) was used for testing the effect of nutrients on their ability to improve fermentation performance of Saccharomyces cerevisiae. The nutrients tested were MgSO4 and nitrogen sources; (NH4)2SO4, urea, yeast extract, peptone and corn steep liquo...

متن کامل

Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase.

The possibility of the diversion of carbon flux from ethanol towards glycerol in Saccharomyces cerevisiae during alcoholic fermentation was investigated. Variations in the glycerol 3-phosphate dehydrogenase (GPDH) level and similar trends for alcohol dehydrogenase (ADH), pyruvate decarboxylase and glycerol-3-phosphatase were found when low and high glycerol-forming wine yeast strains were compa...

متن کامل

Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.

The utilization of Saccharomyces cerevisiae strains overproducing glycerol and with a reduced ethanol yield is a potentially valuable strategy for producing wine with decreased ethanol content. However, glycerol overproduction is accompanied by acetate accumulation. In this study, we evaluated the effects of the overexpression of GPD1, coding for glycerol-3-phosphate dehydrogenase, in three com...

متن کامل

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013